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1. Introduction

According to the book A Geometry of Music, by Dmitri Tymoczko, in Contempo-

rary Music Theory, it is believed that musicians take on a mathematical approach

when creating progressions of chords in their music. Because of this mathematical

approach, musicians construct music as opposed to composing it [9] . In the construc-

tion of their music, musicians strive to create sound that is pleasing to their audience’s

ears. In order to reach this goal, musicians stray away from creating progressions of

chords that are chaotic and random because these progressions create noise that is

not pleasant to the ears. Musicians also tend to avoid progressions that are com-

pletely symmetrical because symmetrical progressions are boring and not appealing

to the ear. When musicians construct their music, they strive to create progressions

of chords that are almost-symmetrical [10]. Because of these almost symmetrical pro-

gressions of chords, barriers between musical styles have fallen and Western music of

the twentieth century in fact is related to the classical music of past centuries. The

music of these different eras are related because they contain progressions of chords

that create similar geometric patterns that are short and efficient [9]. In this paper,

we will first explore the math that underlines Contemporary Music Theory. We will

then use the theory to analyze two songs from different eras.

2. Musical Theory

2.1. Definitions. A musical note in Western music is either a single sound or its

representation in notation [3]. A pitch of a note is the frequency of its vibrations

and can be represented by p = c1 + c2 log(f/440), where c1 is the number a note

is assigned and c2 represents the number of notes in an octave [9]. An octave is the

twelve tone above a given pitch, with twice as many vibrations per second, or below a

given pitch, with half as many vibrations. A piano has eight octaves and each octave

has a different set of the following twelve notes C, C#/D[, D, D#/E[, E, F, F#/G[,

G, G#/A[, A, A#/B[, and B. All notes that are exactly an octave apart belong to

the same pitch class. For example, all of the notes D# in the eight different octaves

belong to the same pitch class. The smallest interval on a piano, a half step, or the

distance between a note on a piano is known as a semitone [9].

We will represent a pitch’s octave by a subscript. For example, the note C that

lives in the first octave will be represented by C1. However, in this paper, we will

ignore octaves and assume that all notes in the same pitch class are the same note.
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For example, since the notes C1, C2, ..., C8 are in the same pitch class, we will assume

that C = C1 = C2 = ... = C8. Below is a picture of the twelve notes that appear in

each of the eight octaves on a piano.

2.2. Modular Arithmetic. Each of our twelve notes will have a numerical repre-

sentation between the range 0 ≤ x ≤ 11:

C=0 F#/G[=6

C#/D[=1 G=7

D=2 G#/A[=8

D#/E[=3 A=9

E=4 A#/B[=10

F=5 B=11

Because of this repetition of notes along our piano, we can view all of the notes

on a piano on a one-dimensional circle that contains only twelve notes. Each time

we make a full rotation around the circle, we enter the next identical octave on the

piano. Below is the one-dimensional circular representation of our twelve notes:

[9]

Since we are dealing with this repetitive cycle around a one-dimensional circle and

each of our twelve notes have numerical representation in the range 0≤ x≤ 11, we will
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use modular arithmetic Z12 to represent our notes and to express the progression of

our notes. In Z12, x ≡ y mod 12, if 12|(x− y) [11].Since we use modular arithmetic,

we will be assuming that all notes in the same pitch class are congruent Z12. For

example, if we look at the note D1, its numerical representation is 2 mod12 and it

can be represented on our one dimensional circle. If we begin at the note D1 and

move up by 12 semitones, or make a full rotation, we land on the D2. Since we are

working in Z12, D2 can be represented numerically by D2 = 2 + 12 = 14 ≡ 2 mod12

since 12|(14− 2). Therefore, D1 ≡ D2 mod 12.

2.3. Voice Leadings. A chord is the simultaneous sounding of two or more notes [3].

A piece of music that includes two or more voices singing or two or more instruments

playing notes simultaneously is an example of a piece of music containing chords.

When a flute, violin, and two voices are playing and singing a note at the same time,

a chord is being played. Chords will be represented in vector notion. For example,

suppose we have a chord that contains the notes C and F. Since C=0 and F=5, our

chord will be represent as
[

0

5

]
.

A voice leading is the the progression of one chord to another [9]. The displacement

of a voice leading is the absolute value of the distance that each note moves in a

progression [9]. We will be representing a displacement by a vector with curly brackets

and the numbers in the displacement vector will be listed from greatest to least and

a pre-order. In mathematics, pre-orders are binary relations that are reflexive and

transitive. Consider some displacement P and a binary relation ≤ on P. Then ≤ is a

pre-order if it is reflexive and transitive, i.e., for all integers a, b and c in P, we have

that a ≤ a, reflexivity. Also if a ≤ b and b ≤ c then a ≤ c, transitivity [7]. There

are numerous possible voice leadings that can occur between a progression of chords.

The minimal bijective voice leading is the smallest of all the possible voice leadings

[9]. Suppose there is a voice leading from
[

0

5

]
to

[
11

8

]
. The minimal bijective voice

leading is when the first note of the chord moves down by 1 semitone and the second

note moves up by 3 semitones. The displacement of this voice leading is represented

by the vector
{
| − 1|
|3|

}
=

{
1

3

}
=

{
3

1

}
. Another voice leading for this progression is

when the first note moves up by 11 semitones and the second notes moves down by

9 semitones. The displacement of this voice leading is
{
|11|
| − 9|

}
=

{
11

9

}
.

In order to study and analyze the progression of chords, we must view chords ge-

ometrically. In order to do this geometry, we must create a way to measure and
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compare the distance moved in a voice leading. There are numerous ways to measure

a displacement vector of a voice leading. However, in this paper we will be using

parsimony as a method of comparing voice leadings. Parsimony is related to the lex-

icogaphic ordering. It generates a notion introduced by Richard Cohn and developed

by Jack Donthett and Peter Steinback. In parsimony, when given two voice leadings,

α and β, α is smaller (or more parsimonious) than β if and only if there exist some

real number d such that for all real numbers c > d, c appears the same number of

times in the displacement multiset of α and β, and d appears fewer times in the dis-

placement mulltiset of α and β [10]. For example, according to Parsimony, the vector
3 + ε

0

0

 is larger than


3

2

1

 and


4

3

3

3

 is larger than


4

3

0

0

.

2.4. Methods of Comparing Voice Leadings. In order to create a geometry of

chords that is almost-symmetrical and easy to understand, a method of comparing

voice leading must satisfy the Distribution Constraint. Parsimony is a method of

comparing voice leadings that satisfies the Distribution Constraint. A method of

comparing voice leadings satisfies the Distribution Constraint when the following

inequalities hold [9]:



x1 + c

x2

.

.

.

xn


≥



x1

x2 + c

.

.

.

xn


≥



x1

x2

.

.

.

xn


for x1 > x2, c > 0.

Below is an example of how parsimony satisfies this constraint:

Let c = 1, x1 = 5, x2 = 3, and x3 = 2. When using parsimony, we know that

the following inequalities hold,


6

3

2

≥


5

4

2

≥


5

3

2

. This implies that


5 + 1

3

2

≥
5

3 + 1

2

≥


5

3

2

.

A n-note multi-set of pitches is a chord that has n-notes and where there is a
possibility of a repetition of the same notes [10]. Suppose we have any two n-note
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multi-set of pitches P and Q, where

P =



p1

p2

.

.

.

pn


and Q =



q1

q2

.

.

.

qn


.

The voice leading from P to Q is crossing free, or uncrossed, if pi > pj implies that

qi ≥ qj for all i, j [10]. For example, the voice leading below is uncrossed since 6 >

5, 4 > 2, 5 > 3, and 2 > 1,

 6

5

3

 −→
 4

2

1

 , 6 > 5 −→ 4 > 2, 5 > 3 −→ 2 > 1

There is a strong relation between the avoidance of voice crossings in voice leadings

and the geometry that creates symmetries that are easy to understand. If a method

of comparing voice leadings obeys the distribution constraint, then there is a min-

imal voice leading between any two chords that is crossing free. Also, if a method

of comparing voice leadings violates the distribution constraint, some crossed voice

leading will be smaller than its natural uncrossed alternative. Theorem 1 is the result

of these ideas and plays a major role in the theory of music.

Theorem 2.1. Theorem 1 (Tymoczko) [10]: Let P and Q be any two n-note multi-

set of pitches, and let our method of comparing voice leadings be a total pre-order

satisfying the distribution constraint. Then there will exist a minimal bijective voice

leading from P to Q that is crossing free. If the total pre-order strictly satisfies the

distribution constraint, then every minimal bijective voice leading from P to Q will be

crossing free.

Below is a proof of part of Theorem 1. Through a proof by contradiction, we will

prove that if we have method of measuring voice leadings that strictly satisfies the

distribution constraint, then every minimal bijective voice leading from P to Q will

be crossing free [10].

Proof. Suppose we fail to satisfy the first inequality of the displacement constraint,[
x1 + c

x2

]
<

[
x1

x2 + c

]
with x1 > x2 and c > 0.
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Let A be the crossed voice leading,
[

0

x1 − x2

]
−→

[
x1 + c

x1

]
.

=⇒ displacement of A =

{
x1 + c

x2

}
.

Let B be the uncrossed voice leading,
[

0

x1 − x2

]
−→

[
x1

x1 + c

]
.

=⇒ displacement of B =

{
x1

x2 + c

}
.

This implies that the displacement of A is smaller than the displacement of B.

Therefore we have shown that a crossed voice leading is smaller than an uncrossed

voice leading.

Suppose we fail to satisfy the second inequality of the displacement constraint and x1 + c

x2

x3

 <

 x1

x2

x3

 with x3 > x2 > 0 and c > 0.

Let A be the crossed voice leading,
[

x1 + x2

x1 + x3 + c

]
−→

[
x1

x1 + c

]
.

=⇒ displacement of A=

{
x2

x3

}
.

Suppose we add pitch p = 0 to the first chord and map it to some note in the

second chord.

Let B be the crossed voice leading,

 0

x1 + x2

x1 + x3 + c

 −→
 x1 + c

x1

x1 + c

.

=⇒ displacement of B=


x1 + c

x2

x3

.

Let C be the uncrossed voice leading,

 0

x1 + x2

x1 + x3 + c

 −→
 x1

x1

x1 + c

.

=⇒ displacement of C=


x1

x2

x3

.

This implies that the displacement of C is greater than the displacement of A.

Therefore we have an uncrossed voice leading that is larger than a crossed voice

leading. In conclusion, this proof shows that if we have a method of comparing voice

leadings that does satisfies the Distribution Constraint, then the minimal bijective

voice leading between two chords is uncrossed. �
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2.5. Distance Preserving Functions. The idea of distance-preserving transfor-

mations of musical space play a large role in composing music because musicians

are primarily sensitive to the distance between notes. Transposition and inversion

are the only two types of distance-preserving transformations that exist. These two

distance-preserving transformation not only play an important role in many different

musical styles, but are key to Contemporary Music Theory.

Transposition is a type of distance-preserving function that moves every pitch in

a chord the same distance in the same direction [9]. Transposition of pitch p by x

semitones is represented as Tx(p) = p + x . Suppose we have a chord x =
[

4

8

]
and

we want to translate our chord down by 5 semitones. This transposition function will

look like T−5(x) =
[

0

5

]
→

{
−5
−5

}
→

[
7

0

]
, where

{
5

5

}
is the displacement vector of

the transposition.

Inversion is a type of distance-preserving function that turns the musical space

upside down. In this function, the direction of motion changes, while the distance

between each pitch remains the same. Inversion can be represented mathematically

by subtraction from a constant value [9]. The inversion that maps p to y, where p

and y are pitches, is represented as Ix(p) = x − p = y . Suppose we have a chord x

=
[

1

2

]
. Suppose we want to invert our chord up by 4 semitones. This inversion will

look like I4(p) =
[

4− 1

4− 2

]
=

[
1

2

]
→

{
1

0

}
→

[
3

2

]
, where

{
1

0

}
is the displacement

vector of the transposition. Figure 2.34 shows how transportation and inversion can

be defined in pitch-class space.
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[9]

Another type of function that plays an important role in Contemporary Music

Theory that is not a distance-preserving transformation is the permutation function.

The permutation function is represented by σ(x) and simply permutes the pitches

in a multi-set of pitches. For example, suppose we have the multi-set of pitches P ,

where P =


1

2

3

4

. Then a permutation of P would be σ(P ) =


2

4

1

3

. In other words,

the permutation function rearranges the order of the pitches in a multi-set of pitches.

A property of a multi-set of pitches that plays an important role in creating effi-

cient voice leadings, chord structures and symmetry is whether or not a multi-set is

invariant under a function. A multi-set of pitches x is said to be invariant under a

function G if G(x) = σ(x)≈ x [9]. Suppose our function is a transposition of +4, G

= T4(x). A multi-set that is invariant under G is

 0

4

8

, since

 0

4

8

→


4

4

4

→
 4

8

0

=

σx ≈ x.

The existence of a multi-set that invariant under a a function creates important

theorem that is key in creating efficient voice leadings, chord structures, and almost-

symmetry.

Theorem 2.2. Theorem 2 (Tymoczko): Let A be a n-note multi-set of pitches and

let G(x) be some distant preserving function. If there exists a SG that is an invariant
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symmetry under a function, the distance between A and SG creates some upper bound

for the distance between A and G(A), where this distance is related to the distance

between A and SG . This upper bound is 2 times the displacement vector from A to

SG. Also, the distance between A and G(A) creates some upper bound for the distance

between A and SG.

Below is an example of a chord progression that satisfies Theorem 2:

Suppose we have a transposition function G(x)=T4(x), that translates all notes in

a chord up by 4 semitones. A chord that is invariant under this function is SG=

 0

4

8



since

 0

4

8

→


4

4

4

→
 4

8

0

=σx ≈ x. Let A=

 0

4

7

.

When we plug our chord A into our function G(x), we get

G(A) = T4(

 0

4

7

)

 0

4

7

→


+4

+4

+4

→
 4

8

11

=

 4

8

11

.

If we ignore order, then

 4

8

11

≈
 11

4

8

 and we can see that when we plug A into

our function G(x), the distance that A moved can be represented by the displacement

vector


1

0

1

=


1

1

0

.

The distance between A and SG is


0

0

1

=


1

0

0

 since A =

 0

4

7

→


0

0

1

. →
 0

4

8

 =

SG. This implies that the chord A is almost-symmetrical since it is only one semitone

away from our invariant function SG,

The distance between SG and G(A) is


0

0

1

=


1

0

0

 and this progression can be

seen below,

SG=

 0

4

8

 ≈
 4

8

0

 →


0

0

1

→
 0

4

8

 = G(A)

We now can look at the distance between A and G(A) in two ways,

(1) A→ G(A).
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The amount moved or displacement vector of this voice leading is


1

1

0

,

which means that the notes move by 2 semitones.

(2) A → SG → G(A) The amount moved or the displacemtn vector of this voice

leading is


1

0

0

 +


1

0

0

 =


2

0

0

, which means that the notes move by 2

semitones.

If we look at 2 times the distance between A and SG, we get 2×


1

0

0

 =


2

0

0


and the notes move by 2 semitones. Also, since the notes move by 2 semitones in the

voice leading from A to G(A), we can see that the distance between A and SG creates

an upper bound for the distance between A and G(A). This upper bound is 2 times

the distance between A and SG and the Distribution Constraint ensures that


2

0

0


>


1

1

0

.

3. The Geometry of Chords

3.1. Ordered Pitch Space and Möbius Geometry. The relationship between

music and geometry begins with chords being represented as points in higher dimen-

sional spaces. There are two ways to represent ordered sequences of pitches geomet-

rically. The ordered sequences can be represented in a one-dimensional space, figure

(a), where progressions between chords are represented by collections of paths. In this

representation, we can ignore the octave of each pitch and assume that all pitches in

the same pitch class are the same, e.g.(0 = C1 = C2 = ... = C8). By ignoring octaves,

we can wrap the line into a circle. This prevents the reproduction of identical pitch

class spaces.
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[9]

The second representation is a two-dimensional space, figure (b), where the hori-

zontal axis represents the first note of the chord, while the vertical axis represents the

second note. Unlike the one-dimensional space, in this space it is difficult to ignore

the octaves and order of each note and progression is represented by line segments

instead of a collection of paths. In the two-dimensional space, the horizontal and

vertical line segments represent motion in a single voice in a chord. Diagonal motion

with positive slope represents parallel motion and signifies that the two notes in the

chords are translating by the same amount, in the same direction. Where as diagonal

motion with negative slope represents contrary motion and this signifies that the two

voices in the chord translate by the same distance but in different directions.

[9]

The figure above shows two representations of the different motions in our two-

dimensional space. However, the second representation is what the motion looks like

after a a clockwise rotation of 45 degrees takes place. The result of this rotation is

that all four of the the different movements change axes. This rotation is necesary

because it will allow parallel motion to be represented on the horizontal axis, while

the perfect contrary is represented on the vertical axis. These new movements allow
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the chords on the same vertical line to sum to the same value and chords on the

same horizontal line to relate by transposition. Although the axes change roles in

this rotation, the space does not change [9].

Figure 1.1 in the appendix depicts an extended potion of a two-dimensional ordered

pitch space with the axis rotated by 45 degrees. When viewing this pitch space, one

can see that periodicity occurs. The larger plane consists of 4 single patterned planes.

Each of the 4 planes, or tiles, are related in that they all contain the same chords [9].

However, the chords in each tile differ from the chords in the other tiles by the octave

and ordering of the notes.

The chords in the lower left tile are related to the upper right tile by octave trans-

position. In both of these tiles, the first note in each chords is the same. While the

second note in each of the chords in the lower left is one octave below the second

note of the chords in the upper right tile. Similar patterns occur between the upper

left and lower right tiles. The first note in the chords in the upper left tile are one

octave below than the first note in the chords in the lower right tiles. The rest of the

infinite space can be created since diagonal motion between tiles always correspond

to octave transposition.

The relationship between the lower and upper left tiles is hard to visually grasp.

In order to see this relationship, imagine that there were hinges connecting the upper

left and lower left quadrants so that the bottom left could be flipped onto the top

left. This transformation causes each chord to match up with a chord that has the

same notes, but just in reverse order. This transformation is a reflection, meaning

a chord from the lower left tile maps to a chord with the same notes, just switched

order. The same relation applies to the upper and lower right tiles. The figure below

represents these relationships, except the ordering of chords from top to bottom is

ignored.
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[9]

If we view identify the two-dimensional pitch space as tiles, then the space we are

dealing with is a plane that is much more interesting than any ordinary plane. We

will now see that this plane contains twists, mirrors, and möbius strips [9]. In order to

show these traits, we will began with the “Parable of the Ant” [9]. Suppose an ant is

walking along figure 3.2.1(a) and we want to bet on whether it will touch a pipe when

walking across the figure. We will assume that the pipe that the ant touches does

not matter, just as long as it touches one of the four pipes. Since the figure is just a

wallpaper of the same face, four times, we can just represent the ant’s trajectory as

a single tile, figure 3.2.1(b).

[9]

On figure 3.2.1(b), at the point marked α, the ant disappears at the lower left edge

of the the upper right tile. In part (a), we can see it just goes onto the upper left

tile. However, if we look at just the one tile, it reappears at the upper right edge. At

the point β, we can see that on (a), it goes off of the bottom edge of the upper left

tile and it enters on the top edge of the lower left tile. However, we can see on the
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single tile that at point β it bounces off of the top of the tile. This shows that the

ant’s trajectory can be displayed on a single tile. However, the top and bottom act

as bumpers and the left and right sides are reminiscent of early video games such as

asteroids or Pac-Man. There is a slight difference between the movement of the Pac-

Man and the ant. When Pac-Man goes off a side he reappears on the opposite side

directly across from where he left the other side. The ant, however, does not reappear

directly across, he reappears somewhat diagonal. The idea of Möbius Geometry comes

into play because of this movement. Suppose we display part of figure 3.2.1(a) into

a figure without any left or right boundaries, figure 3.2.2(a). If we attach the two

edges, we would get a Möbius Strip, 3.2.2(b), since after the twist the edges would

match up with itself.

[9]

The “Parable of the Ant” has a key idea that we will now relate to the two dimen-

sional musical space. We will now assume that the octave and ordering of each pitch

in the chords does not matter, e.g.(0 = C1 = C2 = ... = C8 and (C,D)=(D,C) ). Now

each of the four tiles in figure 1.1 in the appendix contains precisely one point from

every unordered set of pitch classes. Because of this, we can use one tile to represent

our two-dimensional ordered pitch space. Suppose we choose the upper right tile as

our representation of the musical space. Just like figure 3.2.2(b) from the “Parable of

the Ant”, our new figure, figure 3.3.1, has the characteristics of the top and bottom

acting as bumpers and the right and left acting as video games.
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[9]

Our goal is to twist figure 3.3.1, just as we did with the figure from the “Parable

of the ant”. This will work because once we attach the edges by a twist, each of the

chords (0,0),(11,1),(9,3),(8,4),(7,5) and (5,6) will meet up with its duplicate. In our

new fold, we again rotated the axes so that parallel musical motion is represented by

horizontal geometric motion, while vertical motion represents contrary motion. Since

we have duplicate chords that appear on opposite edges, this geometric space depicts

a Möbius Strip [9]. The image below is the numerical representation of figure 3.3.1.

We will be using this to represent the progressions of chords.
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[9]

Figure 1.2 in the appendix is an example of a chord progression that is represented

on the numerical Möbius Strip.

4. Statistical Analysis

4.1. Introduction. In the first part of this paper, we discussed how in Contemporary

Music Theory it is believed that composers of music take on a mathematical approach

when creating music and construct music as a opposed to composing music. Because

of these underlying geometric constructions, many musical theorist today believe that

Western music of the twentieth century is in fact related to the classical music of the

past centuries [9]. In the second part of this paper, I will compare and contrast the

statistical analysis of two-dimensional chords from two different pieces of music that

were composed in different eras. The two songs that I will be comparing are Johann

Pachelbel’s most famous classical piece of music, “Canon in D”, and the popular

country pop song, “Need You Now”, by Lady Antebellum.

4.2. Lady Antebellum’s “Need You Now”. In 2006, an American country pop

group by the name of Lady Antebellum was formed in Nashville,Tennessee. The group

released their second number one single “Need You Know” in August 2009. The song

“Need You know” was co written by Lady Antebellum and Josh Kear. It received

four Grammy Awards in 2011, including Song of the Year and Record of the Year
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[5]. “Need You Know” is a song that is composed of numerous progressions of chords

that include harmonizations of voices and instruments. Because of the appearance of

these types of chords in this song, I will explain the statistical analysis of this song.

4.3. Statistical Analysis of “Need You Now”. The chords that I will be ana-

lyzing in the music of “Need You Now” are two-dimensional chords that include two

different voices singing simultaneously. In the music of this song, there are about 9

stanzas that include progressions of these two dimensional chords [4]. The 9 different

stanzas include interesting patterns, almost-symmetries, and voice leadings that help

prove that the composers of this song strived for short and efficient voice leadings

when composing the music of this song.

Since we are assuming that all octaves are the same, we are working with only

12 different notes. Since we are working with 12 notes and two-note chords, there

are 144 possible combinations of chords. However, since we are assuming that the

ordering of the notes in the chord does not matter and since this song is written in E

major, there are only 49 possible combinations of these two-note chords [4]. From the

statistical analysis of these two-dimensional chords in the song “Need You Now”, I

found that there are only 11 different chords played throughout the song. This shows

that in this piece of music, only about 22.5% of all the possible two-dimensional voice

chords actually appear. The 11 chords that are present in “Need You Now” are (G#,E)

=

[
8

4

]
., (F#,D#) =

[
6

3

]
., (B,G#) =

[
11

8

]
., (E,C#) =

[
4

1

]
., (D#,B) =

[
3

11

]
., (C#,A) =

[
1

9

]
.,

(B,E) =

[
11

4

]
., (A,F#) =

[
9

6

]
., (F#,C#) =

[
6

1

]
., (B,B) =

[
11

11

]
., (C#,G#) =

[
1

8

]
. Each

of the 11 chords appear in this song a different amount of times. Figure 2.1 in the

appendix is a table that shows which chords appear in this piece of music, the amount

of times they are played, and the density of the appearance of each of the chords.

Figure 2.2 in the appendix is a picture of the two-dimensional Möbius Strip that

represents the pitch space. The picture shows the density of each of the chords in

this piece of music. The density of each chord is represented by a red circle. The less

transparent the chord is, the more it occurs in the piece of music.

I began noticing patterns and almost-symmetry in “Need You Now” when I began

the statistical analysis of the voice leadings. Figure 2.3 in the appendix is a chart that

displays the voice leadings of the two dimensional voice chords that occur in this song

and the amount of times that they occur. From figure 2.1 in the appendix, we can see

that the two-dimensional voice chord that is played the most in this piece of music is
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(G#,E) =
[

8

4

]
, it is played 39 times [4]. When we begin to look at the voice leadings

that begin at this chord, it is very common that this chord progresses to itself. In

fact, out of the 39 voice leadings that begin at
[

8

4

]
, 18 of these progressions make

no movement and just stay at
[

8

4

]
. The displacement of this voice leading is

{
0

0

}
.

The next most common voice leading for this chord is
[

8

4

]
=⇒

[
6

3

]
= (F#,D#).

The displacement of this voice leading is
{

2

1

}
.

The voice leading from
[

8

4

]
→

[
8

4

]
is not interesting and creates no geometry

for us to analyze. However, the voice leading from
[

8

4

]
=⇒

[
6

3

]
= (F#,D#)

is interesting because it is an example of a voice leading that is almost-symmetric.

Since this voice leading has a high density, I decided to analyze it more. I went

back to the music of this song and found that it was very common that when this

voice leading occurred there was another voice harmonzing with these notes. The

voice leading that was present was

 8

4

1

 →
 11

6

3

 and I discovered that this was in

fact a popular progression of multi-sets that occurs in this song. The first multi-set

contains the chord
[

8

4

]
and the second contains the chord

[
6

3

]
. The reason why

this voice leading is so common is because each of these chords are close to vectors

that are symmetric and create smooth transitions between chords. Below shows the

progression of these multi-sets that occur in this song, 8

4

1

→
0

0

| − 1|

 →
 8

4

0

→
| − 1|
| − 1|
| − 1|

→
 7

3

11

→
| − 1|
0

0

→
 6

3

11

.

In this progression, we can see that both of our multi-sets of pitches are close to

multi-sets that are symmetrical. The multi-sets of pitches

 8

4

0

 and

 7

3

11

 are

symmetric because if you add four semitones to each of the notes in both of the sets,

it does not change either of the multi-sets of pitches. The fact that both

 8

4

1

 and

 6

3

11

 are right next to these symmetric multi-set of pitches shows that the composers

of this song strived for almost-symmetry.
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4.4. Voice Leadings Represented on the Möbius Strip: .

The follow chord progression,
[

11

4

]
=⇒

[
11

4

]
=⇒

[
1

9

]
=⇒

[
1

9

]
=⇒

[
1

9

]

=⇒
[

11

8

]
=⇒

[
11

8

]
=⇒

[
11

4

]
=⇒

[
11

4

]
=⇒

[
1

9

]
=⇒

[
1

9

]
=⇒

[
1

9

]
=⇒[

11

8

]
=⇒

[
6

3

]
=⇒

[
6

3

]
=⇒

[
8

4

]
=⇒

[
9

6

]
=⇒

[
9

6

]
=⇒

[
8

4

]
=⇒

[
8

4

]
is

the chord progression that occurs in the 8th stanza of this song [4]. In 10 of these

voice leadings, the displacement is
{

0

0

}
because the same chord is being sung twice

or three times in a row. These kinds of voice leadings are not interesting, so we will

look at only the voice leadings in this stanza that progress to a different chord. The

following chord progression
[

11

4

]
=⇒

[
1

9

]
=⇒

[
1

9

]
=⇒

[
11

8

]
=⇒

[
11

4

]
=⇒[

11

4

]
=⇒

[
1

9

]
=⇒

[
11

8

]
=⇒

[
6

3

]
=⇒

[
8

4

]
=⇒

[
9

6

]
=⇒

[
8

4

]
is the progression

of chords that occurs in stanza 8 that does not include the voice leadings that are

just a progression of a chord to itself. Figures 2.4(a),(b), and (c) are the geometric

representation of these voice leadings on the two-dimensional Möbius Strip. The 9

different tiles represents each of the 9 different voice leadings that occur in this stanza.

From figures 2.4(a),(b), and (c), you can notice that the composers strived for

almost-symmetry because the pictures of the voice leadings are neither chaotic nor

perfectly symmetric. Also, from this figure, we can begin to see the statistics of this

song. First, these pictures show us the common chords that are used. Just like the

image of the Möbius Strip with red circles above, we too can determine the density of

each of the notes. These representations of the voice leadings between chords allow

us to visually see how much a chord moves in the progression instead of just relying

on a displacement vector. The idea that musicians strive to construct voice leadings

that are efficient is very apparent here because most of these voice leadings are short.

4.5. Pachelbel’s Canon. Pachelbel’s Canon was composed sometime in the pre-

1700 century era and is known as the most famous piece of music by the German

Baroque composer Johann Pachelbel. Since it was very common for the work of pre-

1700 composers to be forgotten for centuries, Pachelbel’s Canon remained unknown

for many centuries. However, it was rediscovered in the 20th-century. The piece

became extremely popular shorty after it was published in 1919. Pachelbel’s Canon

is still frequently played today at weddings and is included on classical music com-

pilations. The Canon was originally scored for three violins and basso continuo and

paired with a gigue in the same key [9]. For this analysis, we will study Pachelbel’s
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“Canon in D”, which is also known as the a version of Pachelbel’s Canon that has

variations on a ground bass. It includes a flute and two pianos [6].

4.6. Statistical Analysis of “Canon in D”. The chords that I will be analyzing

in the music of “Canon in D” are two-dimensional chords that include two different

instruments, a flute and a piano, playing simultaneously. I will be analyzing the whole

song since at all times in this song, these two-dimensional chords are being played

[6]. Like the two-dimensional voice chords in “Need You Now, these two-dimensional

instrument chords in the “Canon in D” have almost-symmetries and voice leadings

that help prove that the composer of this song strived for short and efficient voice

leadings in their construction.

Since we are ignoring ordering of chords, we will be working with a possibility of 72

chords. However, since this song is written in D major, there are only 49 chords that

could occur in this song [6]. From the statistical analysis of these two-dimensional

chords in the song Canon in D, I found that there are only 25 different chords played

throughout the song. This shows that in this piece of music, only about 51% of all

the possible two-dimensional instrument chords actually appear. The 25 chords that

are present in “Canon in D” are (B,G) =

[
11

7

]
., (F#,D#) =

[
6

2

]
., (C#,A) =

[
1

9

]
., (A,F#)

=

[
9

6

]
., (A,D) =

[
9

2

]
., (D,D) =

[
2

2

]
., (A,A) =

[
9

9

]
., (D,B) =

[
2

11

]
., (D,G) =

[
2

7

]
., (E,A)

=

[
4

9

]
., (F#,B) =

[
6

11

]
. (A,G) =

[
9

7

]
., (E,D) =

[
4

2

]
., (G,F#) =

[
7

6

]
., (E,G) =

[
4

7

]
.,

(C#,F#) =

[
1

6

]
., (C#,G) =

[
1

7

]
., (F#,F#) =

[
6

6

]
., (B,A) =

[
11

9

]
., (C#,D) =

[
1

2

]
., (B,E) =[

11

4

]
., (G,G) =

[
7

7

]
. (F#,E) =

[
6

4

]
., (B,B) =

[
11

11

]
., (C#,E) =

[
1

4

]
. Each of the 25 chords

appear in this song a different amount of times. Figure 2.5 in the appendix is a table

that shows which chords appear in this piece of music, the amount of times they are

played, and the the density of the appearance of each of the chords. Figure 2.6 in the

appendix is a picture of the two-dimensional Möbius Strip that represents the pitch

space. The picture shows the density of each of the chords in this piece of music.

Figure 2.7 in the appendix is a chart that displays the voice leadings of the two-

dimensional instrument chords that occur in this song and the amount of times that

they occur. After analyzing the different voice leadings, I noticed that in this piece

of music the displacement vectors that occurred between the progressions of these

chords were small and efficient. Below is a piece of this music that represents these

efficient voice leadings.
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4.7. Voice Leadings Represented on the Möbius Strip: The follow chord progression,
[

4

7

]

=⇒
[

11

7

]
=⇒

[
9

7

]
=⇒

[
7

7

]
=⇒

[
6

7

]
=⇒

[
4

7

]
=⇒

[
6

2

]
=⇒

[
4

2

]
=⇒

[
2

2

]

=⇒
[

4

2

]
=⇒

[
6

2

]
=⇒

[
7

2

]
=⇒

[
9

2

]
=⇒

[
11

2

]
=⇒

[
2

7

]
is the chord progression

that occurs in the 7th stanza of this song [6]. Unlike a majority of the voice leadings

in “Need You Now”, none of these voice leadings has the displacement
{

0

0

}
. This

is a progression that does not include the voice leadings that are just a progression

of a chord to itself. An interesting pattern that occurs in this voice leading is that

the displacement of these voice leadings moves one of notes in the chord by only one

or two semitones. This is very small movement and shows in the construction of

this piece of music, Pachelbel strived for voice leadings that were efficient and short.

Figures 2.8(a),(b),(c), and (d) are the geometric representation of these voice leadings

on the two-dimensional Möbius Strip. The 14 different tiles represents each of the 14

different voice leadings that occur in this stanza.

From figures 2.8(a),(b), (c) and (d), we not only can see the small displacement

vectors, but we can notice that the composers strived for almost-symmetry because

the pictures of the voice leadings are neither chaotic nor perfectly symmetric. The

voice leadings in this song are much closer to being symmetric than the voice leadings

from ”Need You Now”. Again, from this figure, we can begin to see the statistics of

this songs.

We can began to compare figures 2.8(a),(b), (c) to figures 2.4(a),(b) and (c). There

are many similarities that occur between these two songs. In both figures, the action

that takes place in these voice leadings occur in the same areas of the Möbius Strip.

In both of the representations of the chord progression, the voice leadings usually

occur in the bottom left and upper right of the Möbius Strip. Another important

similarity is that both of these images represent that the composers of both of the

songs strived for an almost-symmetrical pattern and efficient voice leadings.

5. Conclusion

In this paper we have discussed how in Contemporary Music Theory it is believed

that musicians take on a mathematical approach when creating the progressions of

chords. After researching the relation between music and mathematics, I have learned
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that the underlying geometry of chords progressions helps theorist find similar geo-

metric patterns and symmetries that occur throughout all types of genres of music.

Being able to apply mathematics to music has allowed me to understand why musi-

cians strive for certain constructions of progressions of chords. Lastly, through this

research I have learned that mathematics is an essential tool in creating the art of

music.
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